
RapidIO for Linux

Matt Porter
MontaVista Software, Inc.

mporter@mvista.com

mporter@kernel.crashing.org

Abstract

RapidIO is a switched fabric interconnect stan-
dard intended for embedded systems. Provid-
ing a message based interface, it is currently
capable of speeds up to 10Gb/s full duplex
and is available in many form factors includ-
ing ATCA for telecom applications. In this pa-
per, the author introduces a RapidIO subsystem
for the Linux kernel. The implementation pro-
vides support for discovery and enumeration of
devices, management of resources, and a con-
sistent access mechanism for drivers and other
kernel facilities. As an example of the use of
the subsystem feature set, the author presents
a Linux network driver implementation which
communicates via RapidIO message packets.

1 Introduction to RapidIO

1.1 Busses and Switched Fabrics

To date, most well known system interconnect
technologies have been shared memory bus de-
signs. ISA, PCI, and VMEbus are all examples
of shared memory bus systems. A shared mem-
ory bus interconnect will have a specific bus
width which is measured by the number of data
lines routed to each participant on the bus. An

arbitration mechanism is required to determine
which participant owns the bus for purposes of
asserting an address-data cycle onto the bus.
Other participants will decode the address-data
cycle and latch data locally if the address cycle
is intended for them. In the shared memory bus
architecture, there is one global address space
shared amongst all participants.

Switched fabric interconnect technology has
been around for some time with proprietary im-
plementations like StarFabric. In recent years
though, standardized switched fabrics like Hy-
perTransport, Infiniband, PCI Express, and Ra-
pidIO have become more familiar names. A
switched fabric interconnect is usually mod-
eled much like a switched network architecture.
However, it provides features that a chip to
chip or intra-chassis conventional shared mem-
ory bus standard would provide. Each node
has at least one link that can be connected
point to point or into a switch element. An
implementation-specific routing method deter-
mines packet routing in the network. Typi-
cally, a switched fabric interconnect incorpo-
rates some method of sending messages and
events through the network. In some cases,
the switched fabric will implement memory
mapped I/O over the network.

• 35 •

36 • RapidIO for Linux

Logical Layer

MMIO Messaging

Transport Layer

8-bit Device ID 16-bit Device ID

Physical Layer

Parallel Serial
8-bit/16-bit x1/x4

Figure 1: RapidIO Layers

1.2 RapidIO Overview

The RapidIO interconnect technology was
originally created by Motorola for use in em-
bedded computing systems. Motorola (now
Freescale Semiconductor) later created the Ra-
pidIO Trade Association (RTA) to guide future
development of the specification. A number of
embedded silicon vendors are active members
of the RTA and are now shipping or announc-
ing RapidIO devices.

The RapidIO specification is divided into three
distinct layers. These layers are illustrated in
Figure 1.

1. Logical Layer
Provides methods for memory mapped I/O
(MMIO) and message-based access to de-
vices. MMIO allows for accesses within a
local memory space to generate read/write
transactions within the address space of a
remote device. Each device has a unique
RapidIO address space that can range from
34-bits to 66-bits in size. RapidIO pro-
vides a messaging model with mailbox
and doorbell facilities. A mailbox is a

hardware port which can send and receive
messages up to 4KB in size. A doorbell
is a specialized message port which can be
used for event notifications similar to mes-
sage signaled interrupts.

2. Transport Layer
Implements the device ID routing method-
ology. In RapidIO, packets are routed by
a unique device ID. Two different sizes of
device IDs are defined , either a small (8-
bit) or large (16-bit) device ID. The small
device ID allows a maximum of 256 de-
vices whereas the large device ID allows a
maximum of 65536 devices.

3. Physical Layer
Offers either parallel or serial implemen-
tations for the physical interconnect. The
parallel version is available in 8-bit or 16-
bit configurations with full duplex speeds
up to 8 Gb/s and 16 Gb/s, respectively.
The serial implementation offers lane con-
figurations of x1 or x4. In the x1 config-
uration, the single lane offers up to 3.125
Gb/s full duplex data throughput. In the
x4 configuration, each lane offers up to
2.5Gb/s full duplex data throughput result-
ing in 10 Gb/s total bandwidth.

1.3 RapidIO versus PCI Express

RapidIO is often compared to PCI Express be-
cause of the popularity of PCI Express in the
commodity PC workstation/server market. On
the surface, both seem very similar, offering
features that improve upon the use of conven-
tional PCI as a system interconnect. RapidIO,
however, is designed with some features tar-
geted at specific embedded system needs that
will likely facilitate its inclusion in many appli-
cations. There are now embedded processors
available which include both PCI Express and
RapidIO support on the chip.

2005 Linux Symposium • 37

PCI Express and RapidIO have similar data rate
capabilities. PCI Express offers lane configura-
tions of x1 through x32 where each lane offers
2 Gb/s full duplex data throughput. In a typical
PC implementation there is a single x16 slot for
graphics that handles 32 Gb/s full duplex and
multiple x1 slots which can handle 4 Gb/s full
duplex.

Both interconnects also have similar discovery
models. A separate set of transactions is used
to access configuration space registers. Con-
figuration space accesses are used to determine
existence of nodes in the system and additional
information about those nodes.

A major difference between PCI Express and
RapidIO is in system topology capability. PCI
Express is backward compatible with PCI and
therefore depends on the host and multiple
slave device model. RapidIO is designed for
multiple hosts in the system performing redun-
dant discovery. In addition, it can be configured
in any network topology allowing direct node
to node communication.

Device addressing is very different as well. In
PCI Express, the globally shared address space
with hierarchical windows of address space is
retained from PCI. This is important for back-
ward compatibility of software and allows rout-
ing of packets via base address assignments.
RapidIO’s device ID based routing simplifies
changes to the network due to device failure or
hot plug events.

PCI Express does not offer a standardized mes-
saging facility. Most modern distributed appli-
cations are based on message passing architec-
tures.

2 RapidIO Hardware

The current generation RapidIO parts use an 8-
bit wide parallel physical layer. These parts can

support up to 8Gb/s full duplex data through-
put. The first RapidIO processor elements
(endpoints with a processor) are Freescale’s
MPC8540 and MPC8560 Systems-on-a-Chip
(SoC). The first RapidIO switch is the Tundra
Tsi500.

The first commercially available system with
these parts is the STx GP3 HIPPS2 de-
velopment platform. This system includes
one or more STx GP3 boards containing the
MPC8560 processor and a HIPPS2 RapidIO
backplane with two Tsi500 switches. The
Linux RapidIO subsystem is being developed
using this platform with two STx GP3 boards
plugged into the HIPPS2 backplane.

3 Linux RapidIO Subsystem

3.1 Subsystem Overview

Due to the discovery mechanism similarities
between PCI and RapidIO, the RapidIO sub-
system has a structure which is similar to that
of the PCI subsystem. The subsystem hooks
into the standard Linux Device Model (LDM)
in a similar fashion to other busses in the ker-
nel. RapidIO specific device and bus types
are defined and registered with the LDM. The
core subsystem is designed such that there is
a clear separation between the generic subsys-
tem interfaces and architecture specific inter-
faces which support RapidIO. Finally, a set of
subsystem device driver interfaces is defined to
abstract access to facilities by device drivers.

3.2 Subsystem Core

The core of the Linux RapidIO subsystem re-
volves around four major components.

38 • RapidIO for Linux

1. Master Port. A master port is an inter-
face which allows RapidIO transactions to
be transmitted and received in a system.
A master port provides a bridge from a
processor running Linux into the switched
fabric network.

2. Device. A RapidIO device is any endpoint
or switch on the network.

3. Switch. A RapidIO switch is a special
class of device which routes packets be-
tween point to point connections to reach
their final destination.

4. Network. A RapidIO network comprises a
set of endpoints and switches that are in-
terconnected.

Each of these components is mapped into a sub-
system structure. The RapidIO subsystem uses
these structures as the root handle for manipu-
lating the hardware components abstracted by
the structures.

struct rio_mport (Figure 2) contains in-
formation regarding a specific master port.
Master port specific resources such as inbound
mailboxes and doorbells are contained in this
structure. If a master port is defined as a enu-
merating host, then the structure will contain
a unique host device ID. The host device ID
is used for multi-host locking purposes during
enumeration.

struct rio_switch (Figure 3) contains
information about a RapidIO switch device.
The structure is populated during enumeration
and discovery of the system with information
such as the number of hops to the switch and
the routing table present in the switch. In ad-
dition, pointers to switch specific routing table
operations reside here.

struct rio_dev (Figure 4) contains infor-
mation about an endpoint or switch that is part

of the RapidIO system. Fields are present to
cache many common configuration space reg-
isters.

struct rio_net (Figure 5) contains in-
formation about a specific RapidIO network
known to the system. It defines a list of all
devices that are part of the network. Another
list tracks all of the local processor master ports
that can access this network. Thehport field
points to the default master port which is used
to communicate with devices within the net-
work.

3.3 Subsystem Initialization

In order to initialize the RapidIO subsystem, an
architecture must register at least one master
port to send and receive transactions within the
RapidIO network. Asubsys_initcall()
is registered which is responsible for any arch-
specific RapidIO initialization. This includes
hardware initialization and registration of ac-
tive master ports in the system. The final
step of the initcall is to executerio_init_
mports() which performs enumeration and
discovery on all registered master ports.

3.4 Enumeration and Discovery

The enumeration and discovery process is im-
plemented to comply with the multiple host
enumeration algorithm detailed in theRapidIO
Interconnect Specification: Annex I[1]. Enu-
meration is performed by a master port which
is designated as a host port. A host port is de-
fined as a master port which has a host device
ID greater than or equal to zero. A host device
ID is assigned to a master port in a platform
specific manner or can be passed on the com-
mand line.

2005 Linux Symposium • 39

struct rio_mport {
struct list_head dbells; / ∗ list of doorbell events ∗ /

struct list_head node; / ∗ node in global list of ports ∗ /

struct list_head nnode; / ∗ node in net list of ports ∗ /

struct resource iores;

struct resource riores[RIO_MAX_MPORT_RESOURCES];

struct rio_msg inb_msg[RIO_MAX_MBOX];

struct rio_msg outb_msg[RIO_MAX_MBOX];

int host_deviceid; / ∗ Host device ID ∗ /

struct rio_ops ∗ops; / ∗ maintenance transaction functions ∗ /

unsigned char id; / ∗ port ID, unique among all ports ∗ /

unsigned char index; / ∗ port index, unique among all port
interfaces of the same type ∗ /

unsigned char name[40];

};

Figure 2: struct rio_mport

struct rio_switch {
struct list_head node;

u16 switchid;

u16 hopcount;

u16 destid;

u16 route_table[RIO_MAX_ROUTE_ENTRIES];

int (∗add_entry)(struct rio_mport ∗mport, u16 destid, u8 hopcount,

u16 table, u16 route_destid, u8 route_port);

int (∗get_entry)(struct rio_mport ∗mport, u16 destid, u8 hopcount,

u16 table, u16 route_destid, u8 ∗route_port);

};

Figure 3: struct rio_switch

40 • RapidIO for Linux

struct rio_dev {
struct list_head global_list; / ∗ node in list of all RIO devices ∗ /

struct list_head net_list; / ∗ node in per net list ∗ /

struct rio_net ∗net; / ∗ RIO net this device resides in ∗ /

u16 did;

u16 vid;

u32 device_rev;

u16 asm_did;

u16 asm_vid;

u16 asm_rev;

u16 efptr;

u32 pef;

u32 swpinfo; / ∗ Only used for switches ∗ /

u32 src_ops;

u32 dst_ops;

struct rio_switch ∗rswitch; / ∗ RIO switch info ∗ /

struct rio_driver ∗driver; / ∗ RIO driver claiming this device ∗ /

struct device dev; / ∗ LDM device structure ∗ /

struct resource riores[RIO_MAX_DEV_RESOURCES];

u16 destid;

};

Figure 4: struct rio_dev

struct rio_net {
struct list_head node; / ∗ node in list of networks ∗ /

struct list_head devices; / ∗ list of devices in this net ∗ /

struct list_head mports; / ∗ list of ports accessing net ∗ /

struct rio_mport ∗hport; / ∗ primary port for accessing net ∗ /

unsigned char id; / ∗ RIO network ID ∗ /

};

Figure 5: struct rio_net

2005 Linux Symposium • 41

During enumeration, maintenance transactions
are used to access the configuration space of de-
vices. A maintenance transaction has two com-
ponents to address a device, a device ID and
a hopcount. The device ID is normally used
for endpoint devices to determine if they should
accept a packet. It is a requirement for all de-
vices to ignore the device ID and accept any
transaction during enumeration. Switches are a
different case, however, as they do not imple-
ment a device ID. Transactions which reach a
switch device must have their hopcount set ap-
propriately. If a maintenance transaction with a
hopcount of 0 reaches a switch, then the switch
will process the packet against its own configu-
ration space. If a maintenance transaction has a
hopcount greater than 0, then the switch decre-
ments the hopcount in the packet and forwards
it along according to the route set for the corre-
sponding device ID in the packet.

The enumeration process walks the network
depth first. Like PCI enumeration, this is eas-
ily implemented by recursion. When a device
is found, the Host Device ID Lock Register is
written to ensure that the enumerator has exclu-
sive enumeration ownership of the device. The
device’s capabilities are then queried to deter-
mine if it is a switch or endpoint device.

If the device is an endpoint, it is allocated a new
unique device ID and this value is written to
the endpoint. A newrio_dev is allocated and
initialized.

If the device is a switch, its vendor and de-
vice ID are queried against a table of known
RapidIO switches. A switch table entry has a
set of switch routing operations which are spe-
cific to the located switch. The routing opera-
tions are used to read and write route entries in
the switch. Newrio_dev andrio_switch
structures are then allocated and initialized.

Enumeration past a switch device is accom-
plished by iterating over each active switch port

on the switch. For each active link, a route to
a fake device ID (0xFF for 8-bit systems and
0xFFFF for 16-bit systems) is written to the
route table. The algorithm recurses by calling
itself with hopcount + 1 and the fake device ID
in order to access the device on the active port.
While traversing the network, the current allo-
cated device ID is tracked. When the depth first
traversal completes, the recursion unwinds and
permanent routes are written into the switch
routing tables. The device IDs that were found
beyond a switch port are assigned route entries
pointing to the port which they were found be-
hind.

When the host has completed enumeration
of the entire network it callsrio_clear_
locks() to clean up. For each device in the
system, it writes a magic "enumeration com-
plete" value to the Component Tag Register.
This register is essentially a scratch pad register
reserved for enumeration housekeeping. After
this process, all Host Device ID Lock Registers
are cleared. Remote nodes that are to initiate
passive discovery of the network wait for the
magic value to appear in the Component Tag
Register and then begin discovery.

The discovery process is similar to the enumer-
ation process that has already been described.
However, the discovery process is performed
passively. This means that all devices in the
network are traversed without modifying de-
vice IDs or routing tables. This is necessary
in the case where there are multiple enumer-
ation capable endpoints in the system. Typ-
ically, only one or two processors with end-
points will be designated as enumerating hosts.
Out of the competing enumeration hosts, only
one host can win. The losing hosts and other
non-enumerating processors are forced to wait
until enumeration is complete. At that point,
they may traverse the network to find all de-
vices without disturbing the network configu-
ration. When discovery completes, the Linux

42 • RapidIO for Linux

Switch

0

3

2

1
Processor
Element

3

Processor
Element

2

Processor
Element

1

Processor
Element

0

(Host)

Figure 6: Example RapidIO System

RapidIO subsystem will have a complete view
of all RapidIO devices in the network.

In the passive discovery process, the network is
walked depth first as with enumeration. How-
ever, the existing route table entries are uti-
lized to generate transactions that pass through
a switch. When an endpoint device is discov-
ered, ario_dev is allocated but the device
ID is retrieved from the value written in the
Base Device ID Register. When a switch de-
vice is found, discovery iterates over each ac-
tive switch port as with enumeration. How-
ever, in order to generate transactions for de-
vices beyond that switch port, the routing ta-
ble is scanned for an entry which is routed out
that switch port. Using the device ID associ-
ated with the switch port, discovery issues a
transaction with the associated device ID and
a hopcount equal to the number of hops into
the network. The process continues in a similar
manner as described with enumeration until all
devices have been discovered.

3.5 Enumeration and Discovery Example

Figure 6 illustrates a typical RapidIO system.
There are four processor elements (PEs) num-
bered zero through three. Each PE provides Ra-
pidIO endpoint functionality and is connected
to each of four ports on the switch in the center.
PE 0 is the only designated enumerating host in
the system and is assigned a host device ID of 0.
PEs 1-3 do not perform enumeration, but rather
wait for the signal indicating that enumeration
has been completed by PE 0.

PE 0 begins enumeration by attempting to ob-
tain the host device ID lock on the adjoining
device. The transaction to configuration space
is issued with a hopcount of 0 and a device ID
of 0xFF. Since the hopcount of the transaction
is 0, the switch will process the request and al-
low PE 0 to obtain the lock. Once the lock
is obtained, PE 0 queries the device to learn
that it is a switch and allocatesrio_dev and
rio_switch structures.

PE 0 queries the switch to determine that there
are 4 ports with active links present. PE 0 then
begins a loop to iterate over the 4 active ports,
skipping the input port which it is using to ac-
cess the switch device. For each active switch
port, PE 0 performs the following:

1. Writes a route entry that assigns device ID
0xFF to the current active switch port.

2. Issues configuration space transactions
with a hopcount of 1 to access the devices
that are one hop from PE 0:

• Obtains the host device ID lock for
each device.

• Queries the device to determine that
it is an endpoint and allocates a
rio_dev structure.

2005 Linux Symposium • 43

• Assigns the next available device ID
to the endpoint. PEs 1-3 are assigned
device IDs 0x01-0x03, respectively.

3. Assigns route entries corresponding to the
switch ports where the PEs were discov-
ered. Route entries for device IDs 0x01-
0x03 are assigned to switch ports 1-3, re-
spectively.

After this process completes, PE 0 writes the
magic "enumeration complete" value into the
Component Tag Register on each device. This
is followed by PE 0 releasing the host device ID
lock on each device in the system. Once PEs 1-
3 detect that enumeration is complete, they are
free to begin their discovery process.

3.6 Driver Interface

RapidIO device drivers are provided a specific
set of functions to use in their implementation.
In order to guarantee proper functioning of the
subsystem, drivers may not access hardware re-
sources directly.

Configuration space access is managed similar
to configuration space access in the PCI sub-
system.

• rio_config_read_8()
rio_config_read_16()
rio_config_read_32()
rio_config_write_8()
rio_config_write_16()
rio_config_write_32()

Read or write a specific size at an offset of
a device.

• rio_local_config_read_8()
rio_local_config_read_16()
rio_local_config_read_32()
rio_local_config_write_8()

rio_local_config_write_16()
rio_local_config_write_32()

Read or write a specific size at an off-
set of the local master port’s configuration
space.

Several calls handle the ownership and initial-
ization of mailbox and doorbell resources on a
master port or remote device.

• rio_request_outb_mbox()
rio_request_inb_mbox()

Claim ownership of an outbound or in-
bound mailbox, initialize the mailbox for
processing of messages, and register a no-
tification callback. The outbound mailbox
callback provides a interrupt context event
when a message has been sent. The in-
bound mailbox callback provides an event
when a message has been received.

• rio_release_outb_mbox()
rio_release_inb_mbox()

Give up ownership of an outbound or in-
bound mailbox and unregister notification
callback.

• rio_request_outb_dbell()

Claim ownership of a range of doorbells
on a remote device. Ownership is only
valid for the local processor.

• rio_request_inb_dbell()

Claim ownership of a range of doorbells
on the inbound doorbell queue, initialize
the doorbell queue, and register a call-
back. The doorbell callback provides an
event when a doorbell within the regis-
tered range is received.

• rio_release_outb_dbell()

Give up ownership of a range of doorbells
on a remote device.

44 • RapidIO for Linux

• rio_release_inb_dbell()

Give up ownership of a range of doorbells
on the inbound doorbell queue.

Several calls provide access to doorbell and
message queues.

• rio_send_doorbell()

Send a doorbell message to a specific de-
vice.

• rio_add_outb_message()

Add a message to an outbound mailbox
queue.

• rio_add_inb_buffer()

Add an empty buffer to an inbound mail-
box queue.

• rio_get_inb_message()

Get the next available message from an in-
bound mailbox queue.

3.7 Architecture Interface

Every architecture must provide implementa-
tions for a set of RapidIO functions. These
functions manage hardware-specific features
of configuration space access, mailbox access,
and doorbell access.

• rio_ops.lcwrite()
rio_ops.lcread()
rio_ops.cwrite()
rio_ops.cread()

Hardware specific implementations for
generation of read and write transac-
tions to configuration space. These mas-
ter port specific routines are assigned to
a struct rio_ops which is in turn
bound to astruct rio_mport . These

low-level operations are used by the driver
interface configuration space access rou-
tines.

• rio_ops.dsend()

Hardware specific implementation for
generation of a doorbell write transaction.
This master port specific routine is as-
signed to astruct rio_mport and
used by therio_send_doorbell()
call.

• rio_hw_open_outb_mbox()
rio_hw_open_inb_mbox()

Hardware specific initialization for out-
bound and inbound mailbox queues.

• rio_hw_close_outb_mbox()
rio_hw_close_inb_mbox()

Hardware specific cleanup for outbound
and inbound mailbox queues.

• rio_hw_add_outb_message()

Hardware specific implementation to add
a message buffer to the outbound mailbox
queue.

• rio_hw_add_inb_buffer()

Hardware specific implementation to add
an empty buffer to the inbound mailbox
queue.

• rio_hw_get_inb_message()

Hardware specific implementation to get
the next available inbound message.

An architecture must also implement inter-
rupt handlers for mailbox and doorbell queue
events. Typically, inbound doorbell and mail-
box hardware will generate a hardware inter-
rupt to indicate that a message has arrived. Out-
bound doorbell hardware will typically gener-
ate a hardware interrupt when a message has

2005 Linux Symposium • 45

been successfully sent. The architecture inter-
rupt handler must process the event in an ap-
propriate manner for the message type and ac-
knowledge the hardware interrupt.

For inbound doorbell messages, the handler
must extract the doorbell message info and
check for a callback that has been regis-
tered for the doorbell message it has re-
ceived. If a callback has been registered (using
rio_request_inb_dbell()) for a door-
bell range that includes the received doorbell
message, the callback is executed. The call-
back indicates the source, destination, and 16-
bit info field (the doorbell message) that was
received.

A mailbox interrupt handler must execute the
registered callback for the mailbox that gen-
erated the hardware interrupt. It may be re-
quired to do some hardware-specific ring buffer
management and must acknowledge the hard-
ware interrupt. The callback is registered us-
ing rio_request_inb_mbox() or rio_
request_outb_mbox()

3.8 Device Model

The RapidIO subsystem ties into the Linux De-
vice Model in a similar way to most other de-
vice subsystems. A RapidIO bus is registered
with the device subsystem and each RapidIO
device is registered as a child of that bus. Ra-
pidIO specificmatch anddev_attrs imple-
mentations are provided.

rio_match_bus() implementation is a
simple device to driver matching implementa-
tion. It compares vendor and device IDs of
a candidate RapidIO device to determine if a
driver will claim ownership of the device.

Therio_dev_attrs[] implementation ex-
ports all of the common register fields in the

rio_dev structure to sysfs. In addition to the
standarddev_attrs sysfs support, aconfig
node is exported similar to the same node in the
PCI subsystem. It provides userspace access to
the 2MB configuration space on each RapidIO
device.

RapidIO specific implementations of
probe() , remove() , and driver register/
unregister are also provided.

4 RapidIO Messaging Network
Driver (rionet)

4.1 rionet Overview

With the subsystem in place, a driver is still
needed to make use of the new functional-
ity. Since the first RapidIO parts available
are processors with RapidIO interfaces, a net-
work driver to provide communication over the
RapidIO switched fabric makes good sense.
The RapidIO messaging model makes this
easy since managing outbound and inbound
messages is much like a managing a modern
descriptor-based network controller.

4.2 rionet Features

rionethas the following features:

• Ethernet driver model for simplicity

• Dynamic discovery of network peers using
doorbell messages

• Unique MAC address generation based on
RapidIO device ID

• Maximum MTU of 4082

• Uses standard RapidIO subsystem mes-
sage model to work on any RapidIO end-
points with mailboxes and doorbells

46 • RapidIO for Linux

4.3 rionet Implementation

The rionet driver is initialized with ario_
register_driver() call. The id_
table is configured to match all RapidIO de-
vices so that therionet_probe() call will
qualify rionet devices. The probe routine ver-
ifies that the device has mailbox and doorbell
capabilities. If the device is mailbox and door-
bell capable, then it is added to a list of poten-
tial rionetpeers. If at least one potential peer is
found, the local RapidIO device is queried for
its device ID. The MAC address is generated by
concatenating 3 bytes of a well known Ethernet
test network address with a 1 byte zero pad and
finally the 2 byte device ID of the local device.

When rionet is opened, it requests a range of
doorbell messages and registers a doorbell call-
back to process doorbell events. Two mes-
sages,RIONET_JOIN andRIONET_LEAVE,
are defined to manage the active peer discovery
process. For each device in the potential peer
list, theRIONET_JOIN andRIONET_LEAVE
outbound doorbell resources are claimed. After
verifying that the potential peer device has ini-
tialized inbound doorbell service, aRIONET_
JOIN doorbell is sent to it.

The doorbell event handler processes a
RIONET_JOIN doorbell by doing the follow-
ing:

1. Adds the originating device ID to the ac-
tive peer list.

2. Sends aRIONET_JOIN doorbell as a re-
ply to the originator.

If a RIONET_LEAVEdoorbell is received, the
originating device ID is removed from the ac-
tive peer list.

rionet is designed such that it defaults to the
maximum allowable MTU size. With a maxi-
mum RapidIO message payload of 4096 bytes,
the default MTU size is 4082 after allowing for
the 14 byte Ethernet header overhead. Due to
the inclusion of the RapidIO device ID in the
generated MAC address, Ethernet packets in
this driver contain all the information required
to send the packets over RapidIO.

The hard_start_xmit() implementation
in rionet is similar to any standard Ethernet
driver except that it must verify that a desti-
nation node is active before queuing a packet.
The active peer list that was created during the
rionet discovery process is used for this verifi-
cation. The least significant 2 bytes of the des-
tination MAC address are used to index into
the active peer list to verify that the node is
active. If the node is active, then the packet
is queued for transmission usingrio_add_
outb_message() . Housekeeping for free-
ing of completed skbs is handled using the out-
bound mailbox transmission complete event.
This is similar to how a standard Ethernet driver
uses a direct hardware interrupt event for TX
complete events.

Ethernet packet reception is also very similar
to standard Ethernet drivers. In this case, it is
driven from the inbound mailbox event handler.
This callback is executed when the hardware
mailbox receives an inbound message in its
queue.rio_get_inb_message() is used
to retrieve the next inbound Ethernet packet
from the inbound mailbox queue. As skbs are
consumed, a ring refill function adds additional
empty skbs to the inbound mailbox queue using
rio_add_inb_buffer() .

The result is an Ethernet compatible driver
which can be used to leverage the huge set
of TCP/IP userspace applications for develop-
ment, testing, and deployment. The Ether-
net implementation allows routing betweenri-
onetand wired Ethernet networks, opening up

2005 Linux Symposium • 47

many interesting application possibilities. It
is possible to provide the root file system to
nodes via NFS over RapidIO. Coupling this
with firmware support for booting over Ra-
pidIO, it is possible to boot an entire network
of RapidIO processor devices over the RapidIO
network.

5 Going Forward

Although the Linux RapidIO subsystem encap-
sulates much of the hardware functionality of
RapidIO, a few areas have been left incomplete.
The following features are in development or
planned for development.

• In the future, the Linux RapidIO sub-
system will add an interface for man-
aging MMIO regions which are mapped
to per-device address spaces. As a part
of this effort, mmapable sysfs nodes for
each region will be exported for use from
userspace.

• Although parallel RapidIO provided the
first available RapidIO hardware, 16-bit
device ID addressable serial RapidIO is
the direction where all future hardware is
heading. The subsystem is being extended
to handle 16-bit device IDs and the serial
RapidIO physical layer.

• In order to make use of the standardized
error reporting facilities in RapidIO, an in-
terface will be required to register and pro-
cess Port Write Events. These are unso-
licited transactions which are reported to a
specified host in RapidIO Typically, they
will be used for error reporting.

6 Conclusion

Today, the Linux RapidIO subsystem provides
a complete layer for initialization of a Ra-
pidIO network and a driver interface for mes-
sage passing based drivers. The message pass-
ing network driver,rionet, provides a simple
mechanism for application developers to take
advantage of RapidIO messaging. As new Ra-
pidIO devices are released,rionet will serve as
a reference driver for authors of new RapidIO
device drivers.

References

[1] RapidIO Trade Association. RapidIO
Interconnect Specification.
http://www.rapidio.org .

48 • RapidIO for Linux

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

